オリジナル断熱仕様を使ったシミュレーション

はじめに

ESH パッシブデザインツール (以下ツールといいます) には、あらかじめ構法・仕様の異なるデー タセットが組み込まれています。メニューから選択するだけで、モデル全体に適用される非常に優れ た仕組みです。目的に応じて、性能や特性の異なるデータセットの中から選択することで簡単にシミ ュレーションを行っていただけます。

更に、ユーザー自身で構法・仕様データセットを編集・作成することでオリジナルの断熱仕様を利用 したシミュレーションを行うことができます。この手順を習得することでツール利用の可能性が一気 に広がりますので是非チャレンジしてください。

ここでは、木造軸組構法を中心に外壁部分の構法・仕様の指定の手順をご紹介します。

《留意点》

建築物省エネ法における外皮性能の算定

1. 熱橋部分が木造の場合の計算方法

建築物省エネ法では、熱橋部分が木造の場合の計算方法を以下の3種類規定しています。 ①詳細計算方法

②簡略計算方法-1

③簡略計算方法-2

本ツールでは、②簡略計算方法-1によってデータセットを作成しています。各部位の工法 毎に決められた、熱橋部と一般部(断熱部)の面積比率を用いて計算する方法です。

2. 通気層がある場合、外装材の熱抵抗を加算しない

建築物省エネ法での熱貫流率の算定において、通気層がある場合は外装材の熱抵抗を加算 しないことになっています。データセットの作成にあたっても、このルールに従って熱貫 流率を取り扱っています。

EnergyPlus のルールに即したデータセットの作成

1. 熱橋を含んだ構法・仕様データセットの作成

シミュレーションに用いる計算モデルは、床、壁、天井など各部位の構法・仕様を一様な ものとして作成する必要があります。

そのため、外壁部の熱橋を考慮した熱貫流率 U'と、新たに作成するデータセットの熱貫流 率 U が同じ値となるように、断熱材の厚さ d₂を使って調整を行うこととします。

2. 通気層がある場合、通気層と外装材も定義する

建築物省エネ法のルールによって、通気層がある場合には外装材の熱抵抗を加算しないこ ととしましたが、シミュレーションでは、日射や外気の影響を含めて計算を行うので、通 気層と外装材はあるものとしてデータセットを作成します。 ■熱橋を考慮した構法・仕様データセットの作成

- ■データセットの作成方法
- ■データセットの作成 その1 充填断熱の例
- ■データセットの作成 その2 充填付加断熱の例
- ■データセットの作成 その3 その他構造
- ■参考 熱橋部分が木造の場合の計算方法

熱橋を考慮した構法・仕様データセットの作成

冒頭の留意点にも記載していますが、例えば外壁の構成を定義するときには、一般部(断熱部)と 熱橋となる部分の平均値として断熱性能を適用する必要があります。

下図は、一般部と熱橋部からなる外壁の構成を一様なものとして置き換える様子を模式的に示した ものです。熱橋部を含む、外壁の熱貫流率 U'を用いて、逆算して断熱材の厚み d₂を求めます。こ のとき、熱橋の原因となる柱・間柱が断熱材に置き換わっていることに注意してください。

※熱橋を含んだ熱貫流率 U'の値がわかっている必要があります。

①作成する部位の室内外熱伝達抵抗を表より選択

例:外壁

$$\frac{1}{\alpha_{in}} = 0.11, \frac{1}{\alpha_{out}} = 0.04$$

	熱的境界内側(室内側)の	熱的境界外側(外気(則)の表面熱伝達抵抗
部位	表面熱伝達抵抗 (m [°] K/W)	外気に直接接する場合	左記以外の場合
屋根	0.09	0.04	0.09(通気層等)
天井	0.09	-	0.09(小屋裏等)
外壁	0. 11	0.04	0.11(通気層等)
床	0.15	0.04	0.15(床裏等)

Ver.11(住宅・住戸の外皮性能の計算プログラムVer.02.01~) 2018.4 付録A表3.1より抜粋

(2)d₂を算出

$$d_{2} = \lambda_{2} \left(\frac{1}{U'} - \left(0.11 + \frac{d_{1}}{\lambda_{1}} + \frac{d_{3}}{\lambda_{3}} + r_{air} + 0.04 \right) \right)$$

求めた dzを使ってデータセットを作成します。

Х

空気層がある場合には、空気層の 熱抵抗を r_{air} に代入します。

通気層を設ける場合は 0.11、 ない場合は 0.04 を入力します。

データセットの作成方法

ツールの操作画面上では、データセットファイルを指定のフォルダに追加すると、ファイル名が表示されるようになります。ファイル名は半角英数文字に限定する必要はなく、任意に作成することができ、日本語でも構いません。拡張子は.idfです。

データセットファイルはテキスト形式で記述されているので、メモ帳アプリを使って内容を編集、 作成することができます。はじめて取り組まれる方は、既存のファイルをコピーして、必要な部分 を編集しながら作業を進めると安心です。

データセットファイルは必ず以下のフォルダに保存してください。x.x.x はバージョン番号です。 構法・仕様データセット C:¥PassiveDesignToolx.x.x¥Exe¥DataSets¥Construction

(1) Material 材料の登録

【物性値】

 ・計算に必要な物性値は、下表にある表面の荒さについてと7つの数値です。表面の荒さ、長波長 放射率、日射吸収率 ※1、可視光透過率についてはすべての材料で共通の値として取り扱うこ ととしているので、任意材料を定義するには、材料厚さ、熱伝導率、比熱、密度の4つのデータ が必要です。

データ構造

Material,	Material,	
MediumRough,	!- Roughness	荒さ (MediumRough : 固定とする)
0.076,	!- Thickness {m}	厚さ 単位がmであることに注意
0. 038,	$!-$ Conductivity $\{W/m-K\}$	熱伝導率
16,	!- Density {kg/m3}	密度
840,	!- Specific Heat {J/kg-K}	比熱
0. 9,	!- Thermal Absorptance	長波長放射率(0.9:固定)
0.8,	!- Solar Absorptance	日射吸収率(0.8:固定)
0.7;	!- Visible Absorptance	可視光透過率(0.7:固定)

この3つの値は固定値としていま すが、ユーザーが定義されても構 いません。

・調整後の断熱材の厚さ d₂を用いてデータセットを作成します。

【表示名】

- ・同じ材料であっても厚みが異なる場合には、別途オブジェクトが必要です。これらを区別するためにオブジェクト名には、材料名、厚みの呼び寸法、計算上の寸法を含んだ名前とします。
- ・ツールで表示される名称は!以降の部分です。

Material, Plywood_9mm, !- 合板 9mm MediumRough, !- Roughness 0.009, !- Thickness {m} 0.16, !- Conductivity {W/m-K} 550, !- Density {kg/m3} 1300, !- Specific Heat {J/kg-K} 0.9, !- Thermal Absorptance 0.8, !- Solar Absorptance 0.7; !- Visible Absorptance 0.7; !- Visible Absorptance Material, HG_GW16K_79.7mm_105mm, !- 高性能グラスウール断熱材16K相当 105mm MediumRough, !- Roughness 0.0797 !- Thickness {m} 0.38, !- Conductivity {W/m-K} 16, !- Density {kg/m3} 840, !- Specific Heat {J/kg-K} 0.9, !- Thermal Absorptance 0.1, !- Solar Absorptance 0.1, !- Roudhness Material, HG_GW16K_76mm_85mm, !- 高性能グラスウール断熱材16K相当 85mm MediumRough, !- Roudhness		🖹 名称未設定 —	編集済み ~	
Plywood_9mm, !- 合板 9mm MediumRough, !- Roughness 0.009, !- Thickness {m} 0.16, !- Conductivity {W/m-K} 550, !- Density {kg/m3} 1300, !- Specific Heat {J/kg-K} 0.9, !- Thermal Absorptance 0.8, !- Solar Absorptance 0.7; !- Visible Absorptance 0.7; !- Visible Absorptance Material, HG_GW16K_79.7mm_105mm, MediumRough, !- Roughness 0.0797 !- Thickness {m} 0.038, !- Conductivity {W/m-K} 16, !- Density {kg/m3} 840, !- Specific Heat {J/kg-K} 0.9, !- Thermal Absorptance 0.1, !- Solar Absorptance 0.1, !- Specific Heat {J/kg-K} 0.9, !- Thermal Absorptance 0.1, !- Solar Absorptance 0.4 !- Wisible Absorptance 0.5 !- Visible Ab	Material,			
MediumRough, !- Roughness 0.009, !- Thickness {m} 0.16, !- Conductivity {W/m-K} 550, !- Density {kg/m3} 1300, !- Specific Heat {J/kg-K} 0.9, !- Thermal Absorptance 0.8, !- Solar Absorptance 0.7; !- Visible Absorptance 0.7; !- Visible Absorptance Material, Image: Construction で定義するオブジェクト名 Material, Image: Construct ion で定義するオブジェクト名 0.038, !- Conductivity {W/m-K} 16, !- Conductivity {W/m-K} 16, !- Density {kg/m3} 840, !- Specific Heat {J/kg-K} 0.9, !- Thermal Absorptance 0.1, !- Solar Absorptance 0.2, !- Thermal Absorptance 0.1, !- Solar Absorptance 0.7; !- Visible Absorptance <	Plywood_9mm,	!- 合板 9mm		
0.009, !- Thickness {m} 0.16, !- Conductivity {W/m-K} 550, !- Density {kg/m3} 1300, !- Specific Heat {J/kg-K} 0.9, !- Thermal Absorptance 0.8, !- Solar Absorptance 0.7; !- Visible Absorptance 0.7; !- Visible Absorptance Material, !- B性能グラスウール断熱材16K相当 105mm MediumRough, !- Roughness 0.0797 !- Thickness {m} 0.038, !- Conductivity {W/m-K} 16, !- Density {kg/m3} 840, !- Specific Heat {J/kg-K} 0.9, !- Thermal Absorptance 0.1, !- Solar Absorptance 0.7; !- Visible Absorptance 0.7; !- Visible Absorptance 0.7; !- Visible Absorptance 0.7; !- Visible Absorptance 0.7; !- Nister Absorptance 1. !- Bet	MediumRough,	!- Roughness		
0.16, !- Conductivity {W/m-K} 550, !- Density {kg/m3} 1300, !- Specific Heat {J/kg-K} 0.9, !- Thermal Absorptance 0.8, !- Solar Absorptance 0.7; !- Visible Absorptance Material, HG_GW16K_79.7mm_105mm, !- 高性能グラスウール断熱材16K相当 105mm MediumRough, !- Roughness 0.0797 !- Thickness {m} 0.038, !- Conductivity {W/m-K} 16, !- Density {kg/m3} 840, !- Specific Heat {J/kg-K} 0.9, !- Thermal Absorptance 0.1, !- Solar Absorptance %##@ombite####################################	0.009,	<pre>!- Thickness {m}</pre>		
550, !- Density {kg/m3} 1300, !- Specific Heat {J/kg-K} 0.9, !- Thermal Absorptance 0.8, !- Solar Absorptance 0.7; !- Visible Absorptance Material, Interval Material, !- Roughness 0.0797 !- Thickness {m} 0.038, !- Conductivity {W/m-K} 16, !- Density {kg/m3} 840, !- Specific Heat {J/kg-K} 0.9, !- Thermal Absorptance 0.1, !- Solar Absorptance 0.7; !- Visible Absorptance 0.1, !- Solar Absorptance 0.1, !- Solar Absorptance %tetian, !- 高性能グラスウール断熱材16K相当 85mm Material, !- Roughness #Absorptance #& 100 fm #Attriation !- 高性能グラスウール断熱材16K相当 85mm	0.16,	<pre>!- Conductivity {W/m-K}</pre>		
1300, !- Specific Heat {J/kg-K} 0.9, !- Thermal Absorptance 0.8, !- Solar Absorptance 0.7; !- Visible Absorptance Material, HG_GW16K_79.7mm_105mm, !- 高性能グラスウール断熱材16K相当 105mm MediumRough, !- Roughness 0.0797 !- Thickness {m} 0.038, !- Conductivity {W/m-K} 16, !- Density {kg/m3} 840, !- Specific Heat {J/kg-K} 0.9, !- Thermal Absorptance 0.1, !- Solar Absorptance 0.1, !- Roughness B&#ficit 4t solar 20 // Jikg-K] Material, HG_GW16K_76mm_85mm, !- 高性能グラスウール断熱材16K相当 85mm MediumRough, !- Roughness B&#ficit 4t solar 20 // Jikg-K]</td><td>550,</td><td><pre>!- Density {kg/m3}</pre></td><td></td><td></td></tr><tr><td>0.9, !- Thermal Absorptance 0.8, !- Solar Absorptance 0.7; !- Visible Absorptance Material, HG_GW16K_79.7mm_105mm, !- 高性能グラスウール断熱材16K相当 105mm MediumRough, !- Roughness 0.0797 !- Thickness {m} 0.038, !- Conductivity {W/m-K} 16, !- Density {kg/m3} 840, !- Specific Heat {J/kg-K} 0.9, !- Thermal Absorptance 0.1, !- Solar Absorptance 8%7[:(はセミュロン :]</td><td>1300,</td><td><pre>!- Specific Heat {J/kg-K}</pre></td><td></td><td></td></tr><tr><td>0.8, !- Solar Absorptance 0.7; !- Visible Absorptance Material, HG_GW16K_79.7mm_105mm, !- 高性能グラスウール断熱材16K相当 105mm MediumRough, !- Roughness 0.0797 !- Thickness {m} 0.038, !- Conductivity {W/m-K} 16, !- Density {kg/m3} 840, !- Specific Heat {J/kg-K} 0.9, !- Thermal Absorptance 0.1, !- Solar Absorptance 0.1, !- Solar Absorptance 0.7; !- Visible Absorptance 0.7; !- Visible Absorptance 0.7; !- Visible Absorptance 0.7; !- Roughness 0.7; !- Thermal Absorptance 0.1, !- Solar Absorptance 1 Roughness B&{Ticktvs=2pv ;</td><td>0.9,</td><td>!- Thermal Absorptance</td><td></td><td></td></tr><tr><td>0.7; !- Visible Absorptance Material, HG_GW16K_79.7mm_105mm, !- 高性能グラスウール断熱材16K相当 105mm MediumRough, !- Roughness 0.0797 !- Thickness {m} 0.038, !- Conductivity {W/m-K} 16, !- Density {kg/m3} 840, !- Specific Heat {J/kg-K} 0.9, !- Thermal Absorptance 0.1, !- Solar Absorptance 0.1, !- Solar Absorptance 0.7; !- Visible Absorptance 0.7; !- Visible Absorptance 0.7; !- Visible Absorptance 0.7; !- Visible Absorptance 1. - Solar Absorptance 0.1, !- Solar Absorptance 0.1, !- Solar Absorptance 0.2; !- Visible Absorptance 0.3; !- Roughness Beltet Job 2000 // Comparison /</td><td>0.8,</td><td>!- Solar Absorptance</td><td>Construction で定義するオフジョ</td><td>こクト名</td></tr><tr><td>HG_GW16K_d2mm_105mm Material, HG_GW16K_79.7mm_105mm, !- 高性能グラスウール断熱材16K相当 105mm MediumRough, !- Roughness 0.0797 !- Thickness {m} 0.038, !- Conductivity {W/m-K} 16, !- Density {kg/m3} 840, !- Specific Heat {J/kg-K} 0.9, !- Thermal Absorptance 0.1, !- Solar Absorptance 0.1, !- Solar Absorptance 0.7; !- Visible Absorptance 0.7; !- Visible Absorptance Material, HG_GW16K_76mm_85mm, !- 高性能グラスウール断熱材16K相当 85mm MediumRough, !- Roughness 最終行にはセミュロン:</td><td>0.7;</td><td>!- Visible Absorptance</td><td>調整後のオフジェクト名は以下の</td><td>ようにします。</td></tr><tr><td>Material, HG_GW16K_79.7mm_105mm, !- 高性能グラスウール断熱材16K相当 105mm MediumRough, !- Roughness 0.0797 !- Thickness { m} 0.038, !- Conductivity {W/m-K} 16, !- Density {kg/m3} 840, !- Specific Heat {J/kg-K} 0.9, !- Thermal Absorptance 0.1, !- Solar Absorptance 0.1, !- Solar Absorptance 0.7; !- Visible Absorptance 0.7; !- Visible Absorptance Material, HG_GW16K_76mm_85mm, !- 高性能グラスウール断熱材16K相当 85mm MediumRough, !- Roughness 最終行にはセミュロン:</td><td></td><td></td><td>HG_GW16K_d2mm_105mm</td><td></td></tr><tr><td>HG_GW16K_79.7mm_105mm, !- 高性能グラスウール断熱材16K相当 105mm MediumRough, !- Roughness 0.0797 !- Thickness {m} 0.038, !- Conductivity {W/m-K} 16, !- Density {kg/m3} 840, !- Specific Heat {J/kg-K} 0.9, !- Thermal Absorptance 0.1, !- Solar Absorptance 0.7; !- Visible Absorptance Material, HG_GW16K_76mm_85mm, MediumRough, !- 高性能グラスウール断熱材16K相当 85mm MediumRough, !- Roughness</td><td>Material,</td><td></td><td></td><td></td></tr><tr><td>MediumRough, !- Roughness 0.0797 !- Thickness {m} 0.038, !- Conductivity {W/m-K} 16, !- Density {kg/m3} 840, !- Specific Heat {J/kg-K} 0.9, !- Thermal Absorptance 0.1, !- Solar Absorptance 0.7; !- Visible Absorptance Material, HG_GW16K_76mm_85mm, MediumRough, !- 高性能グラスウール断熱材16K相当 85mm MediumRough, !- Roughness</td><td>HG_GW16K_79</td><td>.7mm_105mm,] !- 高性能?</td><td>グラスウール断熱材16K相当 105mm</td><td></td></tr><tr><td>0.0797 !- Thickness {m} 0.038, !- Conductivity {W/m-K} 16, !- Density {kg/m3} 840, !- Specific Heat {J/kg-K} 0.9, !- Thermal Absorptance 0.1, !- Solar Absorptance 0.7; !- Visible Absorptance Material, HG_GW16K_76mm_85mm, MediumRough, !- 高性能グラスウール断熱材16K相当 85mm</td><td>MediumRough,</td><td>!- Roughness</td><td></td><td></td></tr><tr><td>0.038, !- Conductivity {W/m-K} 16, !- Density {kg/m3} 840, !- Specific Heat {J/kg-K} 0.9, !- Thermal Absorptance 0.1, !- Solar Absorptance 0.7; !- Visible Absorptance Material, HG_GW16K_76mm_85mm, !- 高性能グラスウール断熱材16K相当 85mm MediumRough, !- Roughness 最終行にはセミュロン :</td><td>0.0797</td><td>!- Thickness {m}</td><td></td><td></td></tr><tr><td>16, !- Density {kg/m3} 840, !- Specific Heat {J/kg-K} 0.9, !- Thermal Absorptance 0.1, !- Solar Absorptance 0.7; !- Visible Absorptance Material, HG_GW16K_76mm_85mm, !- 高性能グラスウール断熱材16K相当 85mm MediumRough, !- Roughness 最終行にはセミュロン :</td><td>0.038,</td><td>!- Conductivity {W/m-K}</td><td>d2 の値を入力</td><td></td></tr><tr><td>840, !- Specific Heat {J/kg-K} 0.9, !- Thermal Absorptance 0.1, !- Solar Absorptance 0.7; !- Visible Absorptance Material, HG_GW16K_76mm_85mm, HG_GW16K_76mm_85mm, !- 高性能グラスウール断熱材16K相当 85mm MediumRough, !- Roughness</td><td>16,</td><td><pre>!- Density {kg/m3}</pre></td><td></td><td></td></tr><tr><td>0.9, !- Thermal Absorptance 0.1, !- Solar Absorptance 0.7; !- Visible Absorptance Material, HG_GW16K_76mm_85mm, !- 高性能グラスウール断熱材16K相当 85mm MediumRough, !- Roughness 最終行にはセミュロン:</td><td>840,</td><td><pre>!- Specific Heat {J/kg-K}</pre></td><td></td><td></td></tr><tr><td>0.1, !- Solar Absorptance 0.7; !- Visible Absorptance Material, HG_GW16K_76mm_85mm, !- 高性能グラスウール断熱材16K相当 85mm MediumRough, !- Roughness 最終行にはセミュロン:</td><td>0.9,</td><td>!- Thermal Absorptance</td><td>たけはのいたに必要</td><td></td></tr><tr><td>0.7; !- Visible Absorptance な4つの値 Material, HG_GW16K_76mm_85mm, !- 高性能グラスウール断熱材16K相当 85mm MediumRough, <u>!- Roughness</u> 最終行にはセミュロン:</td><td>0.1,</td><td>!- Solar Absorptance</td><td>物性値の設定に必要</td><td></td></tr><tr><td>Material, HG_GW16K_76mm_85mm, !- 高性能グラスウール断熱材16K相当 85mm MediumRough, <u>!- Roughness</u> 最終行にはセミュロン :</td><td>0.7;</td><td>!- Visible Absorptance</td><td>な4つの値</td><td></td></tr><tr><td>Material, HG_GW16K_76mm_85mm, !- 高性能グラスウール断熱材16K相当 85mm MediumRough, <u>!- Roughness</u> 最終行にはセミュロン :</td><td></td><td></td><td></td><td></td></tr><tr><td>HG_GW16K_76mm_85mm, !- 高性能グラスウール断熱材16K相当 85mm MediumRough, <u>!- Rouahness</u> 最終行にはセミュロン:</td><td>Material,</td><td></td><td></td><td></td></tr><tr><td>MediumRough, <u>- Roughness</u> 最終行にはセミコロン:</td><td>HG_GW16K_76</td><td>mm_85mm,</td><td>スウール断熱材16K相当 85mm</td><td></td></tr><tr><td>最終行にはセミコロン:</td><td>MediumRough,</td><td>!- Rouahness</td><td></td><td></td></tr><tr><td></td><td></td><td>最終行にはセミコロン</td><td>;</td><td></td></tr></tbody></table>				

【Materialの区切り】

・Material では、複数の材料を定義することができます。順番は問いませんが、どこに区切りがあ るのか、プログラムに示す必要があります。物性値の最終行にはカンマ,ではなく、セミコロン; を用います。

(2) Construction 構法の設定

ここでは構法の設定を行います。はじめに部位を指定して、建物の外側から室内側に向かって材料 を設定します。材料のオブジェクト名は Material で定義した名称と揃えます。

 ● ● ● ● ● 合 ● 合	
Construction, Exterior Wall, !- 外壁 HG_GW16K_79.7mm_105mm, !- 高性能グラスウール断熱材16K相当 105mm PlasterBoard_9.0mm; !- せっこうボード 9.0mm	Material で編集したオ ブジェクト名となって いるか注意
Construction, Interior Wall, !- 間仕切り PlasterBoard_12.5mm, !- せっこうボード 12.5mm AirSpace, !- 非密閉中空層 PlasterBoard_12.5mm; !- せっこうボード 12.5mm	

データ構造

Construction		オブジェクトの宣言				
Exterior Wall	!- 外壁	名称				
HG_GW16K_76mm_85mm	!- Outside Layer	室外側の材料の材料名				
PlasterBoard_9.0mm	!- Layer 2					

以上が完了したら、ファイル名を確認して指定のフォルダにデータセットファイルを保存してくだ さい。これで新しいデータセットを利用することができます。 実際に、充填断熱構法を例にオリジナル断熱仕様の構法データセットを作成します。6地域において、 以下の表にある仕様を想定します。建築物省エネ法のルールに従い、通気層の外側の外装材はないも のとして取り扱っています。

外壁

柱・間柱間に断熱

熱貫流率U' 【W/(mⁱK)】

				断熱部(一般部)		I	断熱熱部	+熱	橋部	熱橋部	
			面積比率⇒		0.83	0.	00		0.00		0.17
分類	材料	厚さ 【mm】	熱伝導率λ 【W/(mK)】		熱抵抗R 【㎡K/W】	熱拇 【m ⁱ k	抗R 〈/W】	ş, [熱抵抗R 〔㎡K/W】	1	熱抵抗R 【㎡K/W】
外気側の表面熱抵抗値	Ro(通気層0.11)			0	0.11					0	0.11
グラスウール断熱材	高性能グラスウール断熱材16K相当	105.0	0.038	0	2.763					\times	0.00
木質系壁材·下地材	天然木材	105.0	0.120	\times	0.000					0	0.875
非木質系下地·下地材	せっこうボードGB-R,GB-D,GB-L,GB-NC	9.0	0. 221	0	0.041					0	0.041
室内側の表面熱抵抗	Ri				0.11						0.11
확近行 아이가 P[mk/w]				3 024						1 136	
各断面の熱貫流率【W/(m ⁱ K)】					0.331						0. 880
熱貫流率【W/(m [°] K)】			0.424								

はじめに、一般部と熱橋部それぞれの熱抵抗の合計を求めてから、その逆数にあたる熱貫流率を求め ます。一般部と熱橋部の比率は、参考「木造軸組構法の熱貫流率算定における各部位の面積比率」か ら83%と17%とし、それらを加重平均した結果、熱貫流率U':0.424W/(m²K)が得られます。

次に、調整後の断熱材の厚さ d₂を求めるために、熱橋となる柱の部分を除いて一様な面材のみで計算 を行います。d₂の算定式を用いて、グラスウール断熱材の厚さを求めた結果、79.7mm となりました。 実際のグラスウール断熱材の厚さは 105mm ですが、シミュレーションでは 79.7mm を用いた計算が 行われることになります。

分類	材料	厚さ 【mm】	熱伝導率λ 【W/(mK)】		熱抵抗R 【㎡K/W】	
外気側の表面熱抵抗値	Ro (通気層0.11)				0.11	
グラスウール断熱材	高性能グラスウール断熱材16K相当	79.7	0.038		2.097	
木質系壁材·下地材	天然木材	-	-		0.000	
非木質系下地・下地材 せっこうボードGB-R, GB-D, GB-L, GB-NC		9.0	0.221		0.041	
室内側の表面熱抵抗	Ri				0.11	
部材の厚さ					-	
熱抵抗の合計ΣR【m [*] K/W】						
各断面の熱貫流率【W/(m [*] K)】						
熱貫流率【W/(m [°] K)】					0.424	

データセットの作成・編集

- ここでは次の2つの作業を行います。
 - ・Material での材料名と物性値の登録
 - Construction での材料構成の定義
- ① Material

・材料物性値の設定に必要なデータは、材料厚さ、熱伝導率、比熱、密度の4つです。

	名称未設定
0.009,	!- Thickness {m}
0.16,	!- Conductivity {W/m-K}
550,	!- Density {kg/m3}
1300,	<pre>!- Specific Heat {J/kg-K}</pre>
0.9,	!- Thermal Absorptance
0.8,	!- Solar Absorptance
0.7;	!- Visible Absorptance
Material, HG_GW16K_79.7 MediumRough, 0.0797 0.038, 16, 840, 0.9, 0.8	7mm_105mm, !- 高性能グラスウール断熱材16K相当 105mm !- Roughness !- Thickness {m} !- Conductivity {W/m-K} !- Density {kg/m3} !- Specific Heat {J/kg-K} !- Thermal Absorptance
0.8,	I- Visible Absorptiance
Material,	
HG_GW16K_/60	1m_85mm, !- 高性能クラスワール断熱材16K相当 85mm
	I- Thickness {m}
0.070,	I- Conductivity {W/m-K}
16.	I- Density {kg/m3}
840.	!- Specific Heat {]/kg-K}
0.9,	!- Thermal Absorptance
0.8,	!- Solar Absorptance
0.7;	!- Visible Absorptance

高性能グラスウール 16K 相当の厚さを調整することで U 値を調整しています。

(2) Construction

外壁の構成について、外側から順に記述します(通気層があるので、外装材は省略されています)。

●●●	称未設定~	
Construction, Exterior Wall, !- 外壁 HG_GW16K_79.7mm_105mm, !- 高性創 PlasterBoard_9.0mm; !- せっこうボード !	ダラスウール断熱材16K相当 105mm 9.0mm	Material で登録した オブジェクト名
Construction, Interior Wall, !- 間仕切り PlasterBoard_12.5mm, !- せっこうボード AirSpace, !- 非密閉中空層 PlasterBoard_12.5mm; !- せっこうボード	12.5mm 12.5mm	

別の例として、木造充填付加断熱構法を取り上げます。充填断熱構法と違って、柱の外側部分に断 熱材を固定するための軸組部が熱橋部として加わっています。

ここでは、3地域における充填付加断熱の横下地の場合を例に以下の仕様を想定します。

外壁

柱·間柱間断熱+付加断熱(横下地)

熱貫流率U'	0.210
[W/(m̊K)]	0.210

				断熱部(一般部)			断熱熱部+熱橋部				熱橋部	
			面積比率⇒		0.75 <mark>e</mark>		0.08 f		0.12 <mark>g</mark>		0.05 <mark>h</mark>	
分類	材料	厚さ 【mm】	熱伝導率λ 【W/(mK)】		熱抵抗R 【㎡K/W】		熱抵抗R 【㎡K/W】		熱抵抗R 【㎡K/W】		熱抵抗R 【㎡K/W】	
外気側の表面熱抵抗値	Ro (通気層0.11)			$^{\circ}$	0.11	0	0.11	0	0.11	0	0.11	
ポリスチレンフォーム断熱材	押出法ポリスチレンフォーム保温版3種	75.0	0.028	0	2.679	\times	0	0	2.679	\times	0.00	
木質系壁材·下地材	天然木材	75.0	0.120	\times	0.000	0	0.625	×	0	0	0.625	
木質系壁材·下地材	合板	9.0	0.160	0	0.056	0	0.056	0	0.056	0	0.056	
グラスウール断熱材	高性能グラスウール断熱材16K相当	105.0	0.038	0	2.763	0	2.763	×	0	\times	0	
木質系壁材·下地材	天然木材	105	0.12	\times	0	\times	0	0	0.875	0	0.875	
非木質系下地·下地材	せっこうボードGB-R, GB-D, GB-L, GB-NC	9.0	0. 221	0	0.041	0	0.041	0	0.041	0	0.041	
室内側の表面熱抵抗	Ri				0.11		0.11		0.11		0.11	
部材の厚さ				198.0		198		198		198.0		
熱抵抗の合計 Σ R【m [®] K/W】				5.759		3.705		3871		1.817		
各断面の熱貫流率【W/(m ⁱ K)】				0.174		0.27		0.258		0.550		
熱貫流率【W/(m [°] K)】							0.2	10				

下図に示すように、断熱部(一般部)e、断熱部+熱橋部 f+g、熱橋部 hのぞれぞれの面積比率を 表中の数値とした場合、平均の熱貫流率 U'値は 0.210 となります。

次に、熱橋となる部分を除いて、一様な面材として計算を行います。 厚さの調整は XPS(3種) で行うこととし、厚さ d₂は 47.0mm という結果が得られます。

分類	材料	厚さ 【mm】	熱伝導率λ 【W/(mK)】		熱抵抗R 【㎡K/W】	
外気側の表面熱抵抗値	Ro(通気層0.11)				0.11	
ポリスチレンフォーム断熱材	押出法ポリスチレンフォーム保温版3種	47.0	0.028		1.679	
木質系壁材·下地材	天然木材	-	-		0.000	
木質系壁材·下地材	合板	9.0	0.160		0.056	
グラスウール断熱材	高性能グラスウール断熱材16K相当	105.0	0.038		2.763	
木質系壁材·下地材 天然木材		-	-		0.000	
非木質系下地·下地材	せっこうボードGB-R,GB-D,GB-L,GB-NC	9.0	0.221		0.041	
 室内側の表面熱抵抗	Ri				0.11	
部材の厚さ					-	
熱抵抗の合計 Σ R【m [®] K/W】						
各断面の熱貫流率【W/(m [*] K)】						
熱貫流率【W/(m [°] K)】					0.210	

データセットの作成・編集

XPS3種の厚さを調整することで、データセットを作成します。

① Material

材料物性値の設定に必要なデータは、材料厚さ、熱伝導率、比熱、密度の4つでした。手順は充填 断熱構法の場合と同様です。

	📄 名称未設定 — 編集済み				
0.0797,	!- Thickness {m}				
0.038,	!- Conductivity {W/m-K}				
16,	!- Density {kg/m3}				
840,	!- Specific Heat {J/kg-K}				
0.9,	!- Thermal Absorptance				
0.8,	!- Solar Absorptance				
0.7;	!- Visible Absorptance				
Material,					
HG_GW16K_76	mm_85mm, !- 高性能グラスウール断熱材16K相当 85mm				
MediumRough,	!- Roughness				
0.076,	!- Thickness {m}				
0.038,	!- Conductivity {W/m-K}				
16,	!- Density {kg/m3}				
840,	<pre>!- Specific Heat {J/kg-K}</pre>				
0.9,	!- Thermal Absorptance				
0.8,	!- Solar Absorptance				
0.7;	!- Visible Absorptance				
Material,		Constru	ction で定義するオブジェクト名		
XPStype3aA_47	7mm_75mm,				
MediumRough,	!- Roughness				
0.047,	!- Thickness {m}				
0.028,	!- Conductivity {W/m-K} d2 の値 4/mm を入力				
25,	!- Density {kg/m3}	-			
1300,	!- Specific Heat {J/kg-K}				
0.9,	!- Thermal Absorptance				
0.8,	!- Solar Absorptance				
0.7;	!- Visible Absorptance				

2 Construction

・外壁の構成について記述します。

● ● ● <th></th> <th></th>		
Construction,		
Exterior Wall, !- 外壁	Mater	ial で登録した
XPStype3aA_47mm_75mm, 押出法ポリスチレンフォーム保温板3種aA 75mm	オブ	ジェクト名
Plywood_9mm, !- 合板 9mm		
HG_GW16K_105mm, !- 高性能グラスウール断熱材16K相当 105mm		
PlasterBoard_9mm; !- せっこうボード 9mm		
Construction,		
Interior Wall, !- 間仕切り		
PlasterBoard_12.5mm, !- せっこうボード 12.5mm		
AirSpace,		
PlasterBoard_12.5mm; !- せっこうボード 12.5mm		
L		

データセットの作成 その3 その他構造の例

Material での材料の定義と、Construction では外部から内側に向かって材料を定義すれば、自由に 材料を組み合わせてシミュレーションを行うことができます。木造建物の場合、建築物省エネ法との 整合を取るために、通気層がある場合には外装材を省略して熱貫流率を求めました。その場合は、 EnergyPlusの計算上、断熱材が最外部の材料として計算が行われるため、日射吸収率を 0.8 から 0.1 として調整が必要でした。

その他構造としてデータセットを作成する場合でも、上記の配慮は同様ですが、ユーザーの方針として、建築物省エネ法に合わせる必要はなく、通気層を設けて外装材も計算に加えたいならば自由にお使いいただいて構いません。ここでは壁式 RC 造の作成例を取り上げます。木造に比べると熱容量が10倍程度大きな建物になるので、様々なシミュレーションを行うことで新たな知識が得られることとおもいます。この壁式 RC 造の材料を変更するだけで、簡易にログハウスや CLT の建物としてデータセットを作ることもできますので是非お試し下さい。

また、コンピューターを使ったシミュレーションならではの使い方として、実際には実現しそうもな い全面ガラス張りの建物や、すべて土で造る、全面を鉄にしてみたらどうなるのか、分厚い断熱材に してしまうなど発想の限りにおいて自由にお使いいただくことも一考です。

データセットの作成・編集

外壁の部分のみ、厚さ 180mm の RC 造の打ち放し、内部に 9.5mm の石膏ボード貼りのデータセットを作成します。操作マニュアルの p.41 に、物性値の一覧があるので参照してください。

RC なので、実際にはコンクリートと鉄筋の平均値を用いますが、ここではコンクリートの物性値を 入力しています。

コンクリート	`
--------	---

Material,		オブジェクトの宣言		
MediumRough,	!- Roughness	荒さ (MediumRough : 固定とする)		
0.076, !- Thickness {m}		厚さ 単位がmであることに注意		
1.6, !- Conductivity {W/m-K}		熱伝導率		
2300,	!- Density {kg/m3}	密度		
880,	!- Specific Heat {J/kg-K}	比熱		
0. 9,	!- Thermal Absorptance	長波長放射率(0.9:固定)		
0. 8,	!- Solar Absorptance	日射吸収率(0.8:原則固定、通気層がある場合0.1)		
0.7;	!- Visible Absorptance	可視光透過率(0.7:固定)		

000	🖹 名称未設定 ~
Matorial	
Material,	
RC_180mm,	!- RC造 180mm
MediumRough,	!- Roughness
0.18,	!- Thickness {m}
1.6,	!- Conductivity {W/m-K}
2300,	!- Density {kg/m3}
880,	!- Specific Heat {J/kg-K}
0.9,	!- Thermal Absorptance
0.8,	!- Solar Absorptance
0.7;	!- Visible Absorptance

Construction では、すでに登録済のせっこうボード 12.5mm を記述します。

	📄 名称未設定 — 編集済み
Construction, Exterior Roof, Steel_1mm,	!- 屋根 !- 鋼 1mm
Plywood_12mm,	!- 台板 12mm L- 非密閉中空層
BW18K_176mm;	!- 水台湖中土層 !- 吹き込み用グラスウール18K相当 176mm
Construction,	
Exterior Wall,	!- 外壁
RC_180mm,	!- RC造 180mm
PlasterBoard_12.5	imm; !- せっこうボード 12.5mm

建築物省エネ法では、建物の熱橋部分が木造となる場合の一般部位の熱貫流率(Ui)の計算方法について、以下の3通りを定めています。ただし、丸太組構法においては①のみとなっています。

①詳細計算方法

部位ごとに、熱橋部と一般部の見付面積を部材一本ずつ拾い、それぞれの部位の面積を合計した 値を総面積で除することにより面積比率を算出し、あとは部位ごとの熱貫流率を加重平均するこ とで当該部位の熱貫流率を求めたものです。

②簡略計算方法-1

一般部位 i の熱貫流率 Ui は、一般部位 i の部分である k の面積比率を、木造軸組構法の場合は下 表の値を用いることができます。

如告	工法の種類等		面積比率			
리아기포			断熱部	断熱部+熱橋部		熱橋部
	床梁工法	根太間に断熱する場合	0.80			0.20
		根太間に断熱する場合	0.80			0.20
		大引間に断熱する場合	0.85			0.15
床	床東大引工法	根太間断熱+大引間断 熱の場合	根太間断熱材 +大引間断熱 材	根太間断熱材 +大引材等	根太材+大引 間断熱材	根太材+大引 材等
			0.72	0.12	0.13	0.03
	剛床工法		0.85			0.15
	床梁土台同面工法根太間に断熱する場合		0.70			0.30
	柱・間柱間に断熱する場合		0.83			0.17
外壁	柱·間柱間断熱+付加断熱		e 充填断熱材+ 付加断熱材	f 充填断熱材+ 付加断熱層内 熱橋う	g 構造部材等+ 付加断熱材	h 構造部材等+ 付加断熱層内 熱橋部
		横下地の場合	0.75	0.08	0.12	0.05
		縦下地の場合	0.79	0.04	0.04	0.13
天井	桁・梁間に断熱する場合		0.87			0.13
	天井に断熱材を敷込む又は吹込む場合		1			0
屋根	たる木間に断熱する場合		0,86			0.14
	たる木断熱+付加断熱横下地の場合		たる木間断熱材 +付加断熱材	たる木間断熱材 +付加断熱層 内熱橋部(下地 たる木)	たる木+付加断 熱材	たる木+付加断 熱層内熱橋部 (下地たる木)
			0.79	0.08	0.12	0.01

【木造軸組構法の熱貫流率算定における各部位の面積比率】

出典:外皮の熱損失の計算方法 国立研究開発法人 建築研究所

https://www.kenken.go.jp/becc/documents/house/Manual_HeatLoss_20130712.pdf

③簡略計算方法-2

簡略計算法-1を更に簡略化した計算方法で、断熱部の熱貫流率を求めてこの値に補正熱貫流率を 加算することで当該部位の熱貫流率を求めることができます。

なお、ここで定める計算方法は、熱橋部が一定の断熱性能を有する木造であるため適用できる計 算方法となっているので、熱橋部が鉄骨造や鉄筋コンクリート造などの場合はこの計算方法によ ることは出来ません。

最新の情報については国立研究開発法人建築研究所が公開する平成 28 年省エネルギー基準に準拠したエネルギー消費性能の評価に関する技術情報は以下のページを参照してください。

https://www.kenken.go.jp/becc/house.html

以 上